

Linked Lists
Part Two

Outline for Today
● Pointers by Reference

● Changing where you’re looking.
● Tail Pointers

● Speeding up list operations.
● Doubly-Linked Lists

● A preview of things to come.

Recap from Last Time

Linked Lists

1 2 3137

● A linked list is a data structure for storing a
sequence of elements.

● Each element is stored separately from the rest.
● The elements are then chained together into a

sequence.
● The end of the list is marked with some special

indicator.

...an empty list,
represented by
nullptr, or...

a single linked list
cell that points…

… at another linked
list.

A Linked List is Either…

Pointers and References

Prepending an Element
● Suppose that we want to write a function

that will add an element to the front of a
linked list.

● What might this function look like?

sunfish elephantwhale

list

Prepending an Element
● Suppose that we want to write a function

that will add an element to the front of a
linked list.

● What might this function look like?

piraracu sunfish elephantwhale

list

 1. Create a new cell.
 2. Set its next to the start of the list.
 3. Make that cell the start of the list.

Pointers By Value
● Unless specified

otherwise, function
arguments in C++ are
passed by value.

● This includes pointers!
● A function that takes a

pointer as an argument
gets a copy of the pointer.

● We can change where the
copy points, but not
where the original
pointer points.

pointer in
main

pointer in
function

Pointers by Reference
● To resolve this problem, we can pass the linked

list pointer by reference.
● Our new function:
void prependTo(Cell*& list, const string& value) {
 Cell* cell = new Cell;
 cell->value = value;
 cell->next = list;
 list = cell;
}

Pointers by Reference
● To resolve this problem, we can pass the linked

list pointer by reference.
● Our new function:
void prependTo(Cell*& list, const string& value) {
 Cell* cell = new Cell;
 cell->value = value;
 cell->next = list;
 list = cell;
} This is a reference to a

pointer to a Cell. If we change
where list points in this function,

the changes will stick!

Appending to a List

Appending to a List
● Think about which link needs to get

changed to append something to this list:

gerenuk impala greater
kudu alpacaalpaca

Appending to a List
● Think about which link needs to get

changed to append something to this list:

gerenuk impala greater
kudu alpacaalpaca

1. Create a cell whose next field is null.
2. Find the last cell in the list.
3. Change its next pointer.

alpacaslow
loris

When passing in pointers by reference,
be careful not to change the pointer

unless you really want to change where it’s
pointing!

What Went Wrong (Yet Again)?

A Question of Efficiency

Appending to a List
● What is the big-O complexity of

appending to the back of a linked list
using our algorithm?

● Answer: O(n), where n is the number of
elements in the list, since we have to find
the last position each time.

gerenuk impala greater
kudu alpaca slow

loris

Tail Pointers
● A tail pointer is a pointer to the last element

of a linked list.
● Tail pointers make it easy and efficient to add

new elements to the back of a linked list.

1 2 3

head tail

Tail Pointers
● A tail pointer is a pointer to the last element

of a linked list.
● Tail pointers make it easy and efficient to add

new elements to the back of a linked list.

1 2 3

head tail

4

Appending Things Quickly
● Case 1: The list is empty.

● Case 2: The list is not empty.
head tail

1 3 7

head tail

1

137

Time Required:
O(1).

Coda: Doubly-Linked Lists

Doubly-Linked Lists
● There’s a strange asymmetry in a linked list:

you can easily move forward in a list, but
there’s no easy way to move backwards.

● A doubly-linked list is a list where each cell
stores two pointers: one to the next element
in the list, and one to the previous element.

Marissa Megan Angela

Doubly-Linked Lists
● We can also move

backwards in a
doubly-linked list.

● Many algorithms are
a lot easier to write
if you can do this!

Marissa Megan Angela

Cell* list = /* first cell */;
list = list->next;
list = list->prev;

list

Doubly-Linked Lists
● It’s easy to remove a cell from a doubly-linked

list: just wire the nodes next to it around it.
● (Don’t forget to handle edge cases!)

Marissa Angela

For more on doubly-linked lists, check
Section Problems 7 and Chapter 13 of

the textbook.

To Recap
● If you want a function to change which object a

pointer points to, pass that pointer in by
reference.

● When passing pointers by reference, don’t
change the pointer unless you really mean it.

● Tail pointers make it easy to find the end of a
linked list – a handy tool to keep in mind!

● Doubly-linked lists have each cell store pointers
to both the next and previous cells in the list.
They’re useful for when you need to remove out
of a list.

Your Action Items
● Read Chapter 13.

● It’s all about different representations for
data and the relative tradeoffs. And there’s
some great coverage of linked lists in there!

● Finish Assignment 6.
● If you’re following our suggested timeline,

you’ll have completed your implementation
of Linear Probing by today.

● Remember to leave appropriate buffer time
for the performance analysis section!

Next Time
● Tree Structures

● Representing branching structures in code.
● Binary Search Trees

● Maintaining order at a low cost!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

